Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Despite routine detection of coseismic acoustic‐gravity waves (AGWs) in Global Navigation Satellite System (GNSS) total electron content (TEC) observations, models of the earthquake‐atmosphere‐ionosphere dynamics, essential for validating data‐driven studies, remain limited. We present the results of three‐dimensional numerical simulations encompassing the entire coupling from Earth's interior to the ionosphere during the 7.8 2016 Kaikoura earthquake. Incorporating the impact of data/model uncertainties in estimating the ionospheric state, the results show a good agreement between observed and simulated slant TEC (sTEC) signals, assessed through a set of metrics. The signals exhibit intricate waveforms, resulting from the integrated nature of TEC and phase cancellation effects, emphasizing the significance of direct signal comparisons along realistic line‐of‐sight paths. By comparing simulation results initialized with kinematic and dynamic source models, the study demonstrates the quantifiable sensitivity of sTEC to AGW source specifications, pointing to their utility in the analysis of coupled dynamics.more » « less
-
Abstract The Hunga‐Tonga Hunga‐Ha'apai volcano underwent a series of large‐magnitude eruptions that generated broad spectra of mechanical waves in the atmosphere. We investigate the spatial and temporal evolutions of fluctuations driven by atmospheric acoustic‐gravity waves (AGWs) and, in particular, the Lamb wave modes in high spatial resolution data sets measured over the Continental United States (CONUS), complemented with data over the Americas and the Pacific. Along with >800 barometer sites, tropospheric observations, and Total Electron Content data from >3,000 receivers, we report detections of volcano‐induced AGWs in mesopause and ionosphere‐thermosphere airglow imagery and Fabry‐Perot interferometry. We also report unique AGW signatures in the ionospheric D‐region, measured using Long‐Range Navigation pulsed low‐frequency transmitter signals. Although we observed fluctuations over a wide range of periods and speeds, we identify Lamb wave modes exhibiting 295–345 m s−1phase front velocities with correlated spatial variability of their amplitudes from the Earth's surface to the ionosphere. Results suggest that the Lamb wave modes, tracked by our ray‐tracing modeling results, were accompanied by deep fluctuation fields coupled throughout the atmosphere, and were all largely consistent in arrival times with the sequence of eruptions over 8 hr. The ray results also highlight the importance of winds in reducing wave amplitudes at CONUS midlatitudes. The ability to identify and interpret Lamb wave modes and accompanying fluctuations on the basis of arrival times and speeds, despite complexity in their spectra and modulations by the inhomogeneous atmosphere, suggests opportunities for analysis and modeling to understand their signals to constrain features of hazardous events.more » « less
-
Abstract A strong mountain wave, observed over Central Europe on 12 January 2016, is simulated in 2D under two fixed background wind conditions representing opposite tidal phases. The aim of the simulation is to investigate the breaking of the mountain wave and subsequent generation of nonprimary waves in the upper atmosphere. The model results show that the mountain wave first breaks as it approaches a mesospheric critical level creating turbulence on horizontal scales of 8–30 km. These turbulence scales couple directly to horizontal secondary waves scales, but those scales are prevented from reaching the thermosphere by the tidal winds, which act like a filter. Initial secondary waves that can reach the thermosphere range from 60 to 120 km in horizontal scale and are influenced by the scales of the horizontal and vertical forcing associated with wave breaking at mountain wave zonal phase width, and horizontal wavelength scales. Large‐scale nonprimary waves dominate over the whole duration of the simulation with horizontal scales of 107–300 km and periods of 11–22 minutes. The thermosphere winds heavily influence the time‐averaged spatial distribution of wave forcing in the thermosphere, which peaks at 150 km altitude and occurs both westward and eastward of the source in the 2 UT background simulation and primarily eastward of the source in the 7 UT background simulation. The forcing amplitude is2that of the primary mountain wave breaking and dissipation. This suggests that nonprimary waves play a significant role in gravity waves dynamics and improved understanding of the thermospheric winds is crucial to understanding their forcing distribution.more » « less
An official website of the United States government
